Image-based siRNA screen to identify kinases regulating Weibel-Palade body size control using electroporation
نویسندگان
چکیده
High-content screening of kinase inhibitors is important in order to identify biogenesis and function mechanisms of subcellular organelles. Here, we present a human kinome siRNA high-content screen on primary human umbilical vein endothelial cells, that were transfected by electroporation. The data descriptor contains a confocal fluorescence, microscopic image dataset. We also describe an open source, automated image analysis workflow that can be reused to perform high-content analysis of other organelles. This dataset is suitable for analysis of morphological parameters that are linked to human umbilical vein endothelial cell (HUVEC) biology.
منابع مشابه
Corrigendum: Image-based siRNA screen to identify kinases regulating Weibel-Palade body size control using electroporation
This corrects the article DOI: 10.1038/sdata.2017.22.
متن کاملOptimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line
Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...
متن کاملN-ethylmaleimide-sensitive factor siRNA inhibits the release of Weibel-Palade bodies in endothelial cells
The aim of the present study was to examine the effect of small interfering RNA (siRNA) methods on the expression of N‑ethylmaleimide sensitive factor (NSF) and Weibel‑Palade body (WPB) release in endothelial cells. A small hairpin RNA (shRNA), mediated with an adenovirus vector, was designed to target the N‑terminal functional area of NSF. Subsequently, viruses were transfected into human aort...
متن کاملRe-establishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells.
Type 3 von Willebrand disease (VWD) is a severe hemorrhagic defect in humans. We now identify the homozygous mutation in the Chapel Hill strain of canine type 3 VWD that results in premature termination of von Willebrand factor (VWF) protein synthesis. We cultured endothelium from VWD and normal dogs to study intracellular VWF trafficking and Weibel-Palade body formation. Weibel-Palade bodies c...
متن کاملvon Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively.
Large multimers of von Willebrand factor (vWf) are released from the Weibel-Palade bodies of cultured endothelial cells following treatment with a secretagogue (Sporn et al, Cell 46:185, 1986). These multimers were shown by immunofluorescent staining to bind more extensively to the extracellular matrix of human foreskin fibroblasts than constitutively secreted vWf, which is composed predominant...
متن کامل